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High Order Modes in a Spherical Fabry–Perot Resonator

CLIFFORD W. ERICKSON

Abstract—The accuracy of the approximate solution to the wave
equation in the “large aperture” case was investigated. The meas-
ured distribution of energy in the various transverse modes cor-
responded to the Laguerre-Gaussian solutions; resonant frequen-
cies, however, deviated from those predicted by the approximate
theory by as much as 2 percent for high radkd mode mqnbers. Two
first order perturbation calculations, including a neglected tenp in
the wave equation and the nonsphericity of constant ‘phase surfaces,
yielded resonant frequencies in agreement with expe@mept.

I. INTRODUCTION

THE USE of a Fabry–Perot structure as a laser resona-

tor [1], along with its obvious relation to the beam

waveguide for transmission of very short wavelength

microwave power [2], has provided the impetus for de-

veloping an electromagnetic theory of its operation [31-

[5]. Measurements at microwave frequencies have often

been used to verify the theory and analyze the effect of

different parameters [6].

Generally, closed form solutions to the Fabry–Perot

problem are the result of an approximation. In systems

with f‘large aperture, 7’ i.e., where the radial extent of the

mirrors is large enough to reflect all but a negligible por-

tion of beam energy, diffraction is neglected and a wave

analysis of the resonator is carried out as follows: a solu-

tion of the form u = exp ( –jk.z) x (r,o,z) is substituted

into the wave equation V2U + kzu = 0, and the term

d24/&2 is neglected because x is assumed to be a slowly

varying function of z. With this approximation the solu-

tions for the fundamental and higher order modes are

the familiar Laguerre–Gaussian functions, which satisfy

orthogonality relations like modes in a normal resonator.
We have investigated a “large aperture” spherical

mirror l?abry-Perot resonator at X-band frequencies.

In this paper we report the frequency-shifting effects of

including &*/&z and the exact shape of constant phase

surfaces in the wave equation as first order perturbations,

and compare the predicted resonant frequencies with ex-
periment.

11. APPROXIMATE SOLUTION TO THE

WAVE EQUATION

This treatment follows that of Kogelnik and Li [7].

A component of electric field u satisfies the scalar wave

equation

v% + k% = o (1)
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where k = 2x/i is the propagation constant. Substitution

into (1) of the trial function u = exp ( –jkz) # (r,@,z)

yields the equation

At this point the assumption is made that the function

* varies so slowly with z that the second derivative with

respect to z can” be neglected. With this assumption the

solution is

‘p’=(@i)zLp’r:):exp(-r’’w’)
. exp (j[(2p + 1 + 1) tan–l az – (r2/w2)az + 14])

(3)

where LPZ is the generalized Laguerre polynomial, p and 1

are the radial and azimuthal mode numbers, respectively,

and WOis the beam waist defined by the equation

W02= A [d(2R — d) ]112.
2T

(4)

Summarizing the remaining terms, we have the following:

spacing between the mirrors (mirrors are at z =

+d/2) ;

radius of curvature of the mirrors;

A/Two~ ;

Ioo[l + a2z2]l/2;

azimuthal coordinate in the cylindrical coordinate

system.

The total wave function UPZis just exp ( –jkz) times

the expression (3). The condition of resonance is that the

phase shift from one mirror to the other be an integral mul-

tiple of ~; i.e.,

()kd – 2(2P + 1 + 1) tan–l ~ = q7r (5)

where q is the axial mode number. Since the frequency

rather than wavenumber is observed experimentally, we

rewrite formula (5) in terms of ~:

[ ()1~=~q+~(2P+Z+l)tan-’ $ . (6)

Note that the phase shift has been evaluated on the axis

(r = O). Since the phase fronts are assumed spherical,

as are the mirror surfaces, the phase remains constant

over the entire mirror. Actually, like the neglect of d2~/&2,
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(a)

(c)

Fiz. 1. (a) and (b) Radial scans inthemidtilmeof theenersw dktributionof the fundamental (TEM,,) and the
~13MoG’rnode, respectively. (b) and (c) Th~ee dimensional ~~cilloscope representationa of the energy distribution
inthemidplaneof the TEMOZ and TEMos modes, respectively.

this is an approximation which we shall treat as a per-

turbation on the approximate solution.

III. EXPERIMENTAL APPARATUS

The mirrors were made of aluminum with a 45-cm di-

ameter and 61-cm radius of curvature. Signals were ob-

served in transmission, with energy coupled in and out

of the cavit y through identical apertures (0.25-in diameter)

in a coupling diaphragm on the axis. In this way modes

with zero energy on the axis (l # O) were not excited, so

that frequency degeneracies for identical combinations of

(2P + 1 + 1) were avoided. Resonant frequencies were

measured with a direct reading frequency meter and the

energy distribution of the various modes was measured

by the absorptive probe technique described in [8]. The

probe was a 3-mm-diameter sphere of Eccosorb@ which

gave excellent spatial resolution.

@ Registered service mark of Emerson Cuming, inc.

Transverse modes of the type TEMOfl were observed

for p as high as 12 at very close mirror spacing. Measure-

ments were always made in the midplane of the device

to insure that the straight line sweep of the probe re-

mained on a surface of constant phase. Cross-sectional scans

and three-dimensional oscilloscope simulations of the

energy distribution of several modes in the midplane are

shown in Fig. 1.

The beam waists WOcalculated from the radial positions

of the zeros of the measured distribution function agreed

with the expression in (4) to within 5–10 percent. The

accuracy of peak height measurements is estimated to be

l&20 percent. Resonant frequencies, however, can easily

be meisured to one part in 104 (1 MHz in 10 GHz) so

that small discrepancies between results of theory and

experiment would be most readily observable in the fre-

quency measurement. Discrepancies did exist; the meas-

ured frequency exceeded the theoretical frequency in all

modes by an amount depending on the radial mode number
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p. Since the maximum observed frequency discrepancy

for any mode was less than 2 percent, we applied a first

order perturbation correction to the theoretical solution.

IV. PERTURBATION ANALYSES

Two assumptions were made in obtaining the Laguerre-

Gaussian solutions to the wave equation in cylindrical

coordinates: 1) the term a2v/az2 was assumed negligible,

and 2) the surfaces of constant phase were assumed

spherical, even at large distances from the axis. Using

the Laguerre-Gaussian solution we calculated the effects

on the resonant frequency of: 1) a perturbation of the

boundary from the constant phase surface of the theo-

retical solution to that of the actual mirror, and 2) a per-

turbation of the differential operator, namely, the neg-

lected term &$/3z2.

Since these perturbations are to be calculated only to

first order they will be treated separately and their effects

added to obtain the total frequency shift.

A. Perturbation of Boundary Surface

Fig. 2 shows that the constant phase surfaces of the

theoretical problem are mode dependent and that at larger

distances from the axis they are not spherical. Intuitively,

one would expect an experimental frequent y lower than

the theoretical, since the actual mirror surfaces are farther

apart than the theoretical ones. (At very large radii the

theoretical surfaces are farther apart, but there is neg-

ligible energy at such large radii. )

Calling the theoretical constant phase surface S1 we

have a wave function u which obeys the equation

v% + ii.% = o (7)

and is O on S. Let the actual mirror surface be S and as-

sume a new wave function v, which is O on S and obeys

the equation

v% + k.% = o. (8)

Green’s theorem states that for any two functions

/
(UV2V – V!72U) d’X = !( )U:– V: dA (9)

v s

where V is the volume enclosed by the surface S and a/an

is the normal derivative.1 Substituting from the wave

equation and making the simplest possible approximation,

namely, v = u, we have

I The total surface S consists of the mirrors plus the cylindrical
surface r = E~irrOr, but for “large apertures” all functions and
derivatives are zero for r > R~irrOr, so only the mirror surface con-
tributes to the integral.
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Fig. 2. Axial deviation from the designed spherical surface for
constant phase surfaces of various theoretical modes, as well as
for the mirror itself. The hash marks indicating the mode edges
are the radial positions beyond which the function decreases
monotonically from 10-6 of its magnitude on the axis.

Since S and S’ are displaced only slightly from each other

we expand u and au/an in a Taylor)s series about S1, keep-

ing only the highest order term and neglecting the z de-

pendence of #, to get

Since the *’s may be normalized the integral in the de-

nominator may be taken to be unity, and for small differ-

ences between k. and k, we have

where the integral is taken over both mirrors, and 0 is the

angle between the axial direction and the normal to the

mirror surface.

An independent check of this approximate theory was

made by axial displacement of the coupling diaphragm.

Here the formula for frequency shift becomes

Aj Az ‘d

7=7 ~
COS~22r dr (13]

O (one mirror)

where Az and Rd are the axial displacement and radius of

the diaphragm, respectively. Note that in this case the

higher order modes have a larger portion of their energy

on the unperturbed surface, implying a smaller frequency

shift, whereas in the present problem the displacement

between actual and theoretical mirror surfaces is larger

for higher modes, implying a larger frequency shift. Fig. 3

gives the results of this check.
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B. Perturbation of the Di#erential Operator

The equation for which an exact solution exists is

The solutions for 1 = O are

()2?”2 W(j
&’ = L. ~ — exp ( —r2/w2)

w

(14)

[(
~z

.

)1
exp j (2p + 1) tan-l (az) — ~ az . (15)

These solutions have two interesting properties which

make them desirable to use in calculating the true func-

tion: 1) they are orthogonal, and 2) they are complete.

Making use of the latter we express the desired function

r, as a linear combination of the ~po as follows:

Now we abbreviate the operator on the left-hand side of

(14) by H’, and let &/dz’ = H’. The problem now is to

find the solutions +, which satisfy

(H” + H’)+, = 2jk *

where

HOIP” = 2jk ~ .

(17)

(18)

Expanding ~, in terms of the +,0, substituting into (17),

and neglecting second order terms gives

(19)

At this point we make use of the orthogonality property

of the #PO.Multiplying both sides of (19) by ~~O*r ch”and

integrating from O to cc gives

where the integral

/

m I
o, m#n

+~o”~.or dr =
o +W02, m=n.

Thus we are left with differential equations for the CP~(z)

W02 dCw, (z) _ 1

4 dz /
~jk Ornti~O*H’$POr dr. (21)

The +Po are known, and HI is just 82/&2 so the equations

to be solved are

/

W02 dCP~ (z) 1 @ &*p’

4 dz ‘~ico
$m’” ~ r dr. (22)

For the reader’s convenience an explicit expression

for d2~P0/&2, along with integral formulas of pertinent

Laguerre polynomials, are given in the Appendix. With

these, the integral in (22) can be evaluated and the differ-

ential equations for the Cp~ integrated to yield

cm-- = 1P(P– 1)2k 4
(b,p-z + jaz)

c _~3p2+3p+l
PP — 21c 2

(b,, + jaa)

Cpo+, = ~ (p + l)z(bp,+l + jaz)

CP,+2 = : (P + 1) (p + 2)
gk 4

(b,p+z + jaz) (23)

where the bP~ are constants of integration. Note that only

terms between p – 2 and p + 2 contribute to the new

eigenfunction $P. The requirement that the new $P be

orthogonal to first order makes b,i = —b~i and hence all

diagonal bii = O. The other constants can be evaluated

by the requirement that each term in the new wave func-

tion satisfy the resonance condition independently.

up = exp ( –jkz) *P = exp ( –jkz)

p+z

“ [IL”(1 + c,,) + E Czmh”]. (24)
.=p—2;.#p

Thus for the diagonal term the phase is

(a3p2+3p+l
kz – (2p + 1) tan-l (az) – tan–l z ~ )

az

(25)
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Fig. 4. Theoretical and experimental frequency shifts as a func-
tion of radial mode number for various mirror spacings. The
shifts are given relative to that of the fundamental mode which
was less than 3 MHz for all spacings.

and the resonance condition is

()kd – 2(2P + 1) tan–l $ – 2 tan–l
.

( )a3p2+3p+ lad

“% 2 7
= qir. (26)

If we write k = k~ + Ak in the first term, the equation

reduces to

~

( )adp2+3p+ lad—Ak ~ ~ tan-l 2k0
2 T

(27)

where ko is the unperturbed eigenvalue.

Since Ak = 2rAf/c the frequency shift is

( )a3p2+3p+ lad
Af = ~d tan–’ —

2ho 2 -Z”
(28)

Note that the argument of the arc tangent is inherently

positive, so that the frequency shift due to this perturba-

tion is positive. In Fig. 4 the frequency shifts predicted by

perturbation theory are compared with the measured fre-

quency differences between simple theory and experiment,

and we see that the two effects combine to give a good

agreement.

V. CONCLUSIONS

A theoretical calculation was carried out and an experi-

ment performed to examine the accuracy of the approxi-

mate solution to the wave equation in the <‘large aperture”

case. The measured distribution of energy in the various

transverse modes corresponded to the familiar Laguerre-

Gaussian solutions within the experimental accuracy;

however, the resonant frequency, which could be measured

much more accurately, deviated from that predicted by

the approximate theory by as much as 2 percent for high

radial mode numbers. This discrepancy was traced to

inadequacies in two additional assumptions made in

solving the wave equation: 1) that the C32*/&2 was neg-

ligible, and 2) that the surfaces of constant phase of the

Laguerre–Gaussian solutions are spherical at large dis-

tances from the axis. Inclusion of the effects of two in-

dependent first order perturbation calculations yielded

resonant frequencies in agreement with experiment.

Although the experiment was done at microwave fre-

quencies, there is nothing in the theory which precludes

its use at other wavelengths.

APPENDIX

Direct differentiation of ~POwith respect to z, including

the z dependence in w, yields after some algebraic manip-

ulation

1 &#p’l.—
2jk azz

~z

.—

{

–4jp (p – 1) ~ *p_20 exp (4j tan-l z)
2k

[ ( )1+2p 2(2p+l); +j (4p+ l)$–+ 1,-10

. exp

+ 2p

(2j tan-’ z)

[

~3 x

( )1

2X2_— _ “—
~ X2

z #,_Io exp (2j tan-’ z)J X2 W2

+ 2(p + l)(2p + 1)[%+ ’(+-wo

+2(’+lM-%+’(%-+)1:’~0

where x = az and X = 1 + azzz. Repeated use has been

made of the formula x(d/dz) L. (z) = nL~ (x) — nL~–1 (z)

[9].

The following integrals of pertinent Laguerre poly-

nomials are obtained from the formulas in [9], L~a (z) =

L~”+’(z) – L._,a+’(z), and

/

m

ze-’LPLP dx = 2p i- 1
0

0, m+n

I’(n+ a + I)/n!, m = n1:
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J
m

xe-ZLP_lLPdx = —p
o

\
“zze-~LPLPdx = 6p2 + f3P +2

o

/

m

x2e-’LP_lLP dx = —4p2
o

J
m

x2e–zLP_2LP dz = p (p — 1).
o
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A unified Variational Solution to Microstrip

Array Problems

VITTORIO RIZZOLI

Absfracf—A very general variational procedure ‘is used to com-

pute single or coupled microstrips under the quasi-TEM approxima-

tion. The capacitance model is found by means of a unique funda-

mental cell. The method is essentially an extension of Smith’s [1],

but may be used to study a wider variety of problems, such as non-

uniform strip arrays, coplanar striplines, and broad-side coupled

strips. Moreover, it is also possible to compute the coupling capaci-

tance between nonadjacent strips.

I. INTRODUCTION

I
T has been shown in [1], [2], that the capacitance

model of single or coupled microstrip lines can be

computed when capacitances of suitable t‘fundamental

lhfanuscript received May 5, 1974.; revised September 16, 1974.
~)’R~k was sponsored by the Itahan National Research Council
\- _.-.,.

The author is with the Istituto di Elettronica, Universit~ di
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cells” are known. A fundamental cell is a single-strip

rectangular region bounded by electric and/or magnetic

walls. In [1] uniform strip arrays are computed by means

of two fundamental cells, while in [2] the procedure is

extended to nonuniform arrays by use of three fundamental

cells. In the present paper a unique fundamental cell is

used, including all the cliff erent types as special cases. In

this way the computation procedure is unified and be-

comes particularly suitable for programming on a digital

computer. Coplanar striplines as well as broad-side

coupled strips can be calculated by this method; the saving

in computer time is high (up to 70 percent) with respect

to techniques based on optimization of the charge distribu-

tion, such as [7], and even higher with respect to relaxa-

tion techniques, such as [6]. This is due to the use of

a variational method in the computations. The method is

also suitable for computing the coupling capacitance

between nonadjacent strips of a coplanar array.


