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High Order Modes in a Spherical Fabry—Perot Resonator

CLIFFORD W. ERICKSON

Abstract~—The accuracy of the approximate solution to the wave
equation in the “large aperture” case was investigated. The meas-
ured distribution of energy in the various transverse modes cor-
responded to the Laguerre~Gaussian solutions; resonant frequen-
cies, however, deviated from those predicted by the approximate
theory by as much as 2 percent for high radial mode numbers. Two
first order perturbation calculations, including a neglected term in
the wave equation and the nonsphericity of constant phase surfaces,
yielded resonant frequencies in agreement with experiment.

I. INTRODUCTION

HE USE of a Fabry—Perot structure as a laser resona-

tor [17, along with its obvious relation to the beam
waveguide for transmission of very short wavelength
microwave power [ 2], has provided the impetus for de-
veloping an electromagnetic theory of its operation [3 -
[5]. Measurements at microwave frequencies have often
been used to verify the theory and analyze the effect of
different parameters [6].

Generally, closed form solutions to the Fabry—Perot
problem are the result of an approximation. In systems
with “large aperture,” i.e., where the radial extent of the
mirrors is large enough to reflect all but a negligible por-
tion of beam energy, diffraction is neglected and a wave
analysis of the resonator is carried out as follows: a solu-
tion of the form w = exp (—jke)y¥ (r,¢,2) is substituted
into the wave equation V2u 4+ k*u = 0, and the term
9% /922 is neglected because ¢ is assumed to be a slowly
varying function of z. With this approximation the solu-
tions for the fundamental and higher order modes are
the familiar Laguerre—Gaussian functions, which satisfy
orthogonality relations like modes in a normal resonator.

We have investigated a ‘‘large aperture’ spherical
mirror Fabry—Perot resonator at X-band frequencies.
In this paper we report the frequency-shifting effects of
including 0%/d2* and the exact shape of constant phase
surfaces in the wave equation as first order perturbations,

and compare the predicted resonant frequencies with ex-
periment.

II. APPROXIMATE SOLUTION TO THE
WAVE EQUATION

This treatment follows that of Kogelnik and Li [7].
A component of electric field u satisfies the scalar wave
equation

Vi + ku = 0 (1)
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where £ = 2x/\ is the propagation constant. Substitution
into (1) of the trial function u = exp (—jk2)y¥(r,¢,2)
yields the equation
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At this point the assumption is made that the function
¥ varies so slowly with z that the second derivative with
respect to z can be neglected. With this assumption the
solution is

12
bt = (\@ :—D) L, (‘;—’") ~exp (—1*/w)

-exp {J[2p + 1+ 1) tan"taz — (r2/w?)az + lé])
(3)

where L,! is the generalized Laguerre polynomial, p and !
are the radial and azimuthal mode numbers, respectively,
and w is the beam waist defined by the equation

Wt = %r [d(2R — d) = (4)

Summarizing the remaining terms, we have the following:

d spacing between the mirrors (mirrors are at z =
+d/2);

radius of curvature of the mirrors;

)\/ 7TU)02;

wo[l + a2z2:|1’2;

azimuthal coordinate in the eylindrical coordinate
system.

o g 8

The total wave function u,* is just exp (—jkz) times
the expression (3). The condition of resonance is that the
phase shift from one mirror to the other be an integral mul-
tiple of =; i.e.,

ad
kd —22p + 1+ 1) tan™! - ) = (5)
where ¢ is the axial mode number. Since the frequency

rather than wavenumber is observed experimentally, we
rewrite formula (5) in terms of f:

f= 2d[q+—(2p+l—|—1)tan (H)]

Note that the phase shift has been evaluated on the axis
(r = 0). Since the phase fronts are assumed spherical,
as are the mirror surfaces, the phase remains constant
over the entire mirror. Actually, like the negleet of 8%/d22,

(6)



ERICKSON:. HIGH ORDER MODES
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Fig. 1. (a) and (b) Radial scans in the mi(iplane of the energy distribution of the fundamental (TEMg) and the
TEMos mode, respectively. (b) and (c) Three dimensional oscilloscope representations of the energy distribution
in the midplane of the TEM,, and TEMos modes, fespectively.

this is an approximation which we shall treat as a per-
turbation on the approximate solution.

III. EXPERIMENTAL APPARATUS

The mirrors were made of aluminum with a 45-cm di-
ameter and 61-cm radius of curvature. Signals were ob-
served in transmission, with energy coupled in and out
of the cavity through identical apertures (0.25-in diameter)
in a coupling diaphragm on the axis. In this way modes
‘with zero energy on the axis (I £ 0) were not excited, so
that frequency degeneracies for ideritical combinations of
(2p + 14 1) webe avoided. Resonant frequencies were
measured with a direct reading frequency meter and the
energy distribution of the various modes was measured
by the absorptive probe technique described in [8]. The
probe was a 8-mm-diameter sphere of Eccosorb® which
gave excellent spatial resolution.

® Registered service mark of Emerson Cuming, Inc.
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(d)

Transverse modes of the type TEM;, were observed
for p as high as 12 at very close mirror spacing. Measure-
ments were always made in the midplane of the device
to insure that the straight line sweep of the probe re-
mained on a surface of constant phase. Cross-sectional scans
and three-dimensional oscilloscope simulations of the
energy distribution of several modes in the midplane are
shown in Fig. 1.

The beam waists w, calculated from the radial positions
of the zeros of the measured distribution function agreed
with the expression in (4) to within 5-10 percent. The
accuracy of peak height measurements is estimated to be
1020 percent. Resonant frequencies, however, can easily
be measured to one part in 10¢ (1 MHz in 10 GHz) so
that small discrepancies between results of theory and
experiment would be most readily observable in the fre-
quency measurement. Discrépancies did exist; the meas-
ured frequency exceeded the theoretical frequency in all
modes by an amount depending on the radial mode number
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p. Since the maximum observed frequency discrepancy
for any mode was less than 2 percent, we applied a first
order perturbation correction to the theoretical solution.

IV. PERTURBATION ANALYSES

Two assumptions were made in obtaining the Laguerre—
Gaussian solutions to the wave equation in cylindrical
coordinates: 1) the term 9%/d2* was assumed negligible,
and 2) the surfaces of constant phase were assumed
spherical, even at large distances from the axis. Using
the Laguerre—Gaussian solution we calculated the effects
on the resonant frequency of: 1) a perturbation of the
boundary from the constant phase surface of the theo-

_ retical solution to that of the actual mirror, and 2) a per-
turbation of the differential operator, namely, the neg-
lected term 9%/ 922

Since these perturbations are to be calculated only to
first order they will be treated separately and their effects
added to obtain the total frequency shift.

A. Perturbation of Boundary Surface

Fig. 2 shows that the constant phase suifaces of the
theoretical problem are mode dependent and that at larger
distances from the axis they are not spherical. Intuitively,
one would expect an experimental frequency lower than
the theoretical, since the actual mirror surfaces are farther
apart than the theoretical ones. (At very large radii the
theoretical surfaces are farther apart, but there is neg-
ligible energy at such large radii.)

Calling the theoretical Qonstant phase surface S' we
have a wave function 4 which obeys the equation

Viu +k2u =0 (7

and is 0 on S'. Let the actual mirror surface be S and as-
sume a new wave function », which is 0 on 8 and obeys
the equation

) Vo + k2 = 0. (8)
Green’s theorem states that for any two functions
9
[ (uV2 — o) PX = f (u—,i’ — 9‘—‘) dA  (9)
v S o an

where V is the volume enclosed by the surface S and 8/dn
1s the normal derivative.! Substituting from the wave
equation and making the simplest possible approximation,
namely, v = u, we have

f [u(ou/on) ] dA
k2 — k2o~ °

(10)

[wax
14

L The total surface 8 consists of the mirrors plus the cylindrical
surface 7 = Rmimor, but for “large apertures’” all functions and
derivatives are zero for 7 2> Euirror, S0 only the mirror surface con-
tributes to the integral.
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Fig. 2. Axial deviation from the designed spherical surface for
constant phase surfaces of various theoretical modes, as well as
for the mirror itself. The hash marks irdicating the mode edges
are the radial positions beyond which the function decreases
monotonically from 10-% of its magnitude on the axis.

Since S and S* are displaced only slightly froin each other
we expand % and du/dn in a Taylor’s series about S, keep-
ing only the highest order term and neglecting the z de-
pendence of ¢, to get

k.2 / . Any? dA
8
k2 — k2= (11)
id | yrdd

sl

Since the ¥'s may be normalized the integral in the de-
nominator may be taken to be unity, and for small differ-
ences between k, and k&, we have

f Anyg? dA / Az cos Y2 dA
gt st

A ,
Fo d - d (12)

where the integral is taken over both mirrors, and 6 is the
angle between the axial direction and the normal to the
mirror surface. ]

An independent check of this approximate theory was
made by axial displacement of the coupling diaphragm.
Here the formula for frequency shift becomes

7-31.

0 (one mirror)

cos 8y22r dr (13)

where Az and Ry are the axial displacement and radius of
the diaphragm, respectively. Note that in this case the
higher order modes have a larger portion of their energy
on the unperturbed surface, implying a smaller frequency
shift, whereas in the present problem the displacement
between actual and theoretical mirror surfaces is larger
for higher modes, implying a larger frequency shift. Fig. 3
gives the results of this check.
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Fig. 3. Frequency shifts for the TEM g, TEM,,, and TEM ¢; modes
caused by axial displacement of the coupling diaphragm.

B. Perturbation of the Differential Operator

The equation for which an exact solution exists is

o 1oy ., Oy

— 4 - = 29k — .

ar? + 7 dr J oz (14)
The solutions for I = 0 are

¥t = L, (———) — exp (—r2/u?)
w

- exp [j (<2p +1) tan™? (az) — ;a)] . (15)

These solutions have two interesting properties which
make them desirable to use in calculating the true func-
tion: 1) they are orthogonal, and 2) they are complete.

Making use of the latter we express the desired function
¥, as a linear combination of the ¥, as follows:

¥ = ‘/’po + i Cpn(z)‘/’no(r:z)-

n=0

(16)

Now we abbreviate the operator on the left-hand side of
(14) by HY, and let 3%/8z22 = H*. The problem now is to
find the solutions ¥, which satisfy

(HO + HY)y, = 2ﬂc"—“ (17)
where
0
Hupt = 2% 222 (18)
0z

Expanding ¢, in terms of the ,°, substituting into (17),

and neglecting second order terms gives
Hl‘ppo — 2jk Z lﬁn(’% .

z

n=0

(19)

At this point we make use of the orthogonality property
of the y,°. Multiplying both sides of (19) by ¥."*r dr and
integrating from 0 to » gives
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f YadHY0r dr = 2k 3 =22 ) / U0 dr - (20)
0 n=0 dZ
where the integral
w 0, m #n
/ Yl Y 0 dr =
0 Lwe?, m = n,

Thus we are left with differential equations for the Cp.(2)

wo dCon(2)
4 dz

/ Un HYOr dr. (21)

2]10

The ¢,° are known, and H* is just §2/82* so the equations
to be solved are
I = 02%
0¥ rdr.
T 2k f 4 ’

wo dem(z)
4 dz
For the reader’s convenience an explicit expression
for 9%,0/02%, along with integral formulas of pertinent
Laguerre polynomials, are given in the Appendix. With
these, the integral in (22) can be evaluated and the differ-
ential equations for the C,,. integrated to yield

(22)

a -1 .
Cppsz = 5{)(1)4 ) (bpp—2 + jaz)
Cop1 = ;I; P2(bpp—1 + jaz)
a3pt+3p+1 .
Cop = % P 2]7 (bpp + jaz)
a .
Copi1 = ﬁ (p + 1)2(bpps1 + jaz)
a +1 + 2 .
Copr = e PHELLED (4 p o) (23)

where the b,.,, are constants of integration. Note that only
terms between p — 2 and p + 2 contribute to the new
eigenfunction y,. The requirement that the new ¢, be
orthogonal to first order makes b,; = —b,; and hence all
diagonal b;; = 0. The other constants can be evaluated
by the requirement that each term in the new wave func-
tion satisfy the resonance condition independently.

» = exp (—jke)y¥, = exp (—jkz)

»+2

* [‘pp()(l + Cpp) + Z

n=p—2; n#p

Comn®]. (24)

Thus for the diagonal term the phase is
3p? + 3 1
kz — (2p 4+ 1) tan™ (az) — tan™! (%__p—{—_)p_—i—_ az)

(25)
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Fig. 4. Theoretical and experimental frequency shifts as a func-
tion of radial mode number for various mirror spacings. The
shifts are given relative to that of the fundamental mode which
was less than 3 MHz for all spacings.

and the resonance condition is

Z

d
kd — 2(2p + 1) tan— (‘%) — 2tan—t

2
. (—“———3p T+l @> = gr. (26)

2k 2 2

If we write k = ky + Ak in the first term, the equation
reduces to

2 a dp*+3p+ 1lad
Ak~ —tan~'{— ———" — 27
i <2k0 2 2) @7)
where k, is the unperturbed eigenvalue.
Since Ak = 27Af/c the frequency shift is
_c _1(i3p2+3p+1go_l) 9
Af 7 tan ok, E-e— (28)

Note that the argument of the arc tangent is inherently
positive, so that the frequency shift due to this perturba-
tion is positive. In Fig. 4 the frequency shifts predicted by
perturbation theory are compared with the measured fre-
quency differences between simple theory and experiment,
and we see that the two effects combine to give a good
agreement.

V. CONCLUSIONS

A theoretical calculation was carried out and an experi-
ment performed to examine the accuracy of the approxi-
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mate solution to the wave equation in the “large aperture”
case. The measured distribution of energy in the various
transverse modes corresponded to the familiar Laguerre—
Gaussian solutions within the experimental accuracy;
however, the resonant frequency, which could be measured
much more accurately, deviated from that predicted by
the approximate theory by as much as 2 percent for high
radial mode numbers. This discrepancy was traced to
inadequacies in two additional assumptions made in
solving the wave equation: 1) that the d%0/92% was neg-
ligible, and 2) that the surfaces of constant phase of the
Laguerre—Gaussian solutions are spherical at large dis-
tances from the axis. Inclusion of the effects of two in-
dependent first order perturbation calculations yielded
resonant frequencies in agreement with experiment.
Although the experiment was done at microwave fre-
quencies, there is nothing in the theory which precludes
its use at other wavelengths.

APPENDIX
Direct differentiation of ,° with respect to z, including
the z dependence in w, yields after some algebraic manip-
ulation
1oy,
27k 927

a? . z? .
=. ﬁ {—4Jp (p—1) E Ypo® exp (47 tan x)

: :
+%hm+n%+(w+n%—gﬂnf
- exp (27 tan™ x)

s z {227\ | 22 .
+2p [—— — 5 @)] o et exp (2] tan™" 2)

vam+nep+n [ +i (- %) e

e+t |n T\ /e

E-w+G-)]E) ]
Tl  =t\e /| \e/"

where z = az and X = 1 4 a%% Repeated use has been
made of the formula z(d/dx)L.(2) = nL.(x) — nLa(Z)
9]

The following integrals of pertinent Laguerre poly-
nomials are obtained from the formulas in [9], L.*(x) =
L, (z) — L,-1*t(2), and

© 0, mFEN
/ ez L,*(2) L,*(x) dz = :

0 T'(n + a + 1)/n,

m=n

/ ze*LyL,dx = 2p 41

0
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f xe~ "Ly L, dx = —p

)

f a?e2L,L, dr = 6p* + 6p + 2
0

f 2oL, L, dz =

0

_4p2
| @ty sy de = p(p — 1),
0
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A Unified Variational Solution to Microstrip

Array Problems

VITTORIO RIZZOLI

Abstract—A very general variational procedure'is used to com-
pute single or coupled microstrips under the quasi-TEM approxima-
tion. The capacitance model is found by means of a unique funda-
mental cell. The method is essentially an extension of Smith’s [1],
but may be used to study a wider variety of problems, such as non-
uniform strip arrays, coplanar striplines, and broad-side coupled
strips. Moreover, it is also possible to compute the coupling capaci-
tance between nonadjacent strips.

I. INTRODUCTION

T has been shown in [17], [2], that the capacitance
model of single or coupled microstrip lines can be
computed when capacitances of suitable ‘“fundamental
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cells” are known. A fundamental cell is a single-strip
rectangular region bounded by electric and/or magnetic
walls. In [1] uniform strip arrays are computed by means
of two fundamental cells, while in [2] the procedure is
extended to nonuniform arrays by use of three fundamental
cells. In the present paper a unique fundamental cell is
used, including all the different types as special cases. In
this way the computation procedure is unified and be-
comes particularly suitable for programming on a digital
computer. Coplanar striplines as well as broad-side
coupled strips can be caleulated by this method; the saving
in computer time is high (up to 70 percent) with respect
to techniques based on optimization of the charge distribu-
tion, such as [7], and even higher with respect to relaxa-
tion techniques, such as [6]. This is due to the use of
a variational method in the computations. The method is
also suitable for computing the coupling capacitance
between nonadjacent strips of a coplanar array.



